

Hrvatsko Asfaltersko Društvo

Croatian Asphalt Association

Najnovija iskustva s vlaknima modificiranim asfalton

Latest Experiences with Fiber Modified Asphalt Pavements

Frank Hauber J. Rettenmaier & Söhne (Germany)

Međunarodni seminar ASFALTNI KOLNICI 2019 International seminar ASPHALT PAVEMENTS 2019 Latest Experiences with Fiber Modified Asphalt Pavements

SMA Binder Course Noise Reducing Asphalt Pavements - SMA plus Asphalt Pavements for Regional Roads – AC Duopave

Latest Experiences with Fiber Modified Asphalt Pavements

SMA Binder Course Noise Reducing Asphalt Pavements - SMA plus **Asphalt Pavements for Regional** Roads – AC Duopave

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Fibers designed by Nature

Challenges for Binder Courses

- High trafficked areas
- Increasing number of traffic jams
- Increasing number of truck traffic
- Higher axle loads
- Different types of surface pavements

Heavy Load Traffic

Fibers designed by Nature

Load

Road design according to load classes

Based on RStO 12 - Guidelines for the standardization of pavement structures of traffic areas, Edition 2012

J. RETTENMAIER & SÖHNE

German Road Specifications

German Road Specifications

German Specifications

TL Asphalt-StB 07/13

German Technical Conditions of Delivery for Asphalt Mixtures for the Construction of Road Pavements,

updated according to "ARS 11/2012" published by the Federal Ministry of Transport, Building and Urban Development

German Specifications

ZTV Asphalt-StB 07/13

German Additional Technical Conditions of Contract and Directives for the Construction of Road Asphalt Pavements,

updated according to "ARS 11/2012" published by the Federal Ministry of Transport, Building and Urban Development

Expectations of the Administration

- Reliable
- Functional
- Durable
- Sustainable
- Economical

AC B C Asphalt Concrete Binder Course

Fibers designed by Nature

Room for Improvement

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Room for Improvement

Fibers designed by Nature

Requirements to an alternative Concept

- Deformation resistance
- Impermeable to water
- Easy to apply and to handle
- Process reliable
- Possible use of a maximum amount of RAP
- Longer life time
- Lower life-cycle costs

J. RETTENMAIER &

The Concept Solution

SMA B C **Stone Mastic Asphalt Binder Courses**

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Fibers designed by Nature

SMA Binder Course

Seminar on Asphalt Pavements - Opatija 2019

1997 Julerchen Co

SMA Binder Courses

Recommendations for SMA B C

SMA B C		SMA22BC	SMA 16 B C
Materials			
Aggregates (production size)			
Ratio crushed aggregate surface		Ciant Cast : Cart	Cincal Care Care
Resistance to crushing		SZ ₁₄ /LA ₂₁	SZ, /LA,
Minimum part of fine aggregates $0/2$ with $E_{\rm cs}35$		100	100
Composition of Asphalt Mixture			-
Aggregate mixture			5
Passing slove 31.5 mm	% by weight	100	
Passing sieve 22.4 mm	% by weight	90-100	100
Passing sleve 16 mm	% by weight	65-75	90 - 100
Passing sieve 11.2 mm	% by weight	50 - 60	68 - 73
Passing sieve 8 mm	% by weight	-	46-56
Passing sieve 2 mm	% by weight	23-28	25-30
Passing sieve 0.063 mm	% by weight	6-10	6+10
Binder			
Binder, type and grade		10/40-65	10/40-65 (25/55-55)
Minimum binder content	% by weight	8_48	8,52
Stabilizing additive (cellulose fibers)	% by weight	<u>≥</u> 02	<u>≥</u> 0.2
Asphish Moture			
Minimum void content Marshall-Specimen	Vol%	V 3.0	V_ 3.0
Maximum void content Marshall-Specimen	Vol%	V 4.0	V_4.0
Binder volume	Vol%	is to be specified	is to be specified
Voids filled with bitumen		is to be specified	is to be specified
CONTRACTOR OF CONTRACTOR	-	000 50	000 00

(_) in exceptions

Characteristics of Layer			
Paving thickness	cm	9.5-12.0	6.0 - 9.5
Degree of compaction		≥98.0	298.0
Void content	Vol%	1.5-5.5	1.5-5.5

Fibers designed by Nature

J. RETTENMAIER & SÖHNE

Publication 2008

SMA for Asphalt Binder Courses

Kerstin Gärtner, Klaus Graf and Marco Schünemann

So far asphalt binder courses have been designed according to the specifications of ZTV Asphalt-StB 01 with a particularly high deformation resistance being the main focal point. The resistance was achieved by using highly viscous bitumen and a relatively small bitumen content. This led to a failure of the asphalt binder course caused by stripping and finally to collateral damage in the asphalt surface course. The concept of the recently designed stone mastic asphalt binder course is based on lessons learned and features a high bitumen content, low air voids, good Association]). As these binder courses are susceptible to water ingress the regulations set forth that high shoulders should be sealed with hot bitumen. When renewing the road surface these binder courses often showed considerably damages due to water ingress. Large sections had to be replaced which lead to subsequent cost increases. An alternative binder course mixture based on the SMA principle was developed for these reasons. Binder courses with this design were laid in North and South Germany as early as in the 80ies and 90ies and proved to be very stable. Recently, more and more noise reducing wearing courses have been laid featuring a higher void content. Consequently, a greater amount of water reached the base consisting of asphalt binder. Even if the base is

FGSV Working Group

German Road and Transportation Research Association

Working Group 7.3.3 Innovations

Specification in Germany

Instructions for the design and construction of alternative asphalt binder courses

Edition 2015

Increasing Number of Projects

Increasing Number of Projects

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

SMA Binder Courses

- Deformation resistant
- Impermeable to water
- Easy to apply and to handle
- Use of up to 30 % RAP possible
- Process reliable
- Longer life time
- Lower life-cycle costs

Latest Experiences with Fiber Modified Asphalt Pavements

SMA Binder Course Noise Reducing Asphalt Pavements - SMA plus Asphalt Pavements for Regional Roads – AC Duopave

Traffic Noise

Noise Level – The Influencing Factors

- Maximum aggregate size fraction
- Gradation curve
- Void content
- Evenness
- Roughness
- Surface treatment (gritting)

Noise Reduced Areas

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Noise Reduced Areas

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Fibers designed by Nature

Noise Reduced Areas

Seminar on Asphalt Pavements - Opatija 2019

SMA plus Noise Reducing SMA

SMA plus **Noise Reducing SMA**

Recommendations for SMA plus SMA plus SMA plus 8 SMA plus 5 Aggregates (production size) atio crushed aggregate surface Canal Canal Canal Carrie Carrie Carrie SZ ... / LA Resistance to crushing 82,/LA_ sistance to polishing 100 100 Minimum part of fine aggregates 0/2 with Ec 38 sition of Asphalt Mixture ggregate mixture % by weight nat spence 11.2 mm 100 % by weight 90-100 100 8 mm Passing slove 20-30 5.8 mm % by weight 85-100 ing sleve % by weight 15-20 20-30 2 mm Passing sieve 7-10 0.063 mm % by weight 40/100-65 40/100-65 Binder, type and grade 45/80-50 45/80-50 (25/55-55) (25/55-55) Minimum binder content* (factor o) % by weight 8. 66 B. 7.0 Binder volume Vol.-% is to be specified is to be specified ≥ 0.15 Stabilizing additive (cellulose fibers) shak Mistur Minimum void content Marshall-Specimen Vol.-% V...9.0 V_ 9.0 laximum void content Marshall-Specimer Vol.-% V_11.0 V_ 11.0 is to be specified oids filled with bitumen is to be specified rtional rut dept is to be specified is to be specified aracteristics of Layer **Paving thickness** 2.5-4.0 20-3.0 cm Degree of compaction Vol.-% 9.0-14.0 Vold content 9.0-14.0 ss (4 m section of measurements)

" factor a considers the density of the aggregate mature

Publications

J. RETTENMAIER & SÖHNE

Publications

alece 1997

J. RETTENMAIER & SÖHNE

FGSV Working Group

German Road and Transportation Research Association

Working Group 7.3.3 Innovations

SMA plus Specifications

Seminar on Asphalt Pavements - Opatija 2019

Recommendations for the Planning and Implementation of Noise-optimized Asphalt Surface Courses

Edition 2014

Fibers designed by Nature

Recommendations

	Maximum Speed in km/h		
	30 < v _{max} <u>≤</u> 50	50 < v _{max} < 80	v _{max} ≥ 80
Dominating traffic noise emission	Vehicle power train Trucks up to 50 km/h Cars up to 30 km/h	Contact tyre / road	
Recommended SMA mix	SMA plus 5	SMA plus 5	
		SMA plus 8	SMA plus 8

Source: E LA D, FGSV 2014

Fibers designed by Nature

J. RETTENMAIER & SÖHNE

Latest Experiences with Fiber Modified Asphalt Pavements

SMA Binder Course Noise Reducing Asphalt Pavements - SMA plus

Asphalt Pavements for Regional Roads – AC Duopave

AC Duopave

Approach in 2008 SMA Binder at District Ostalb -Test Section ?

Idea Adaption of the SMA Binder concept for District Roads !

J. RETTENMAIER & SÖHNE

Fibers designed

AC Duopave

AC DUOPAVE

Combination layer surface / base course "Two in One"

German Road Network

- Autobahn
- Federal Road
- Regional Road
- District Road
- Municipal Road

Load

Road design according to load classes

Based on RStO 12 - Guidelines for the standardization of pavement structures of traffic areas, Edition 2012

J. RETTENMAIER & S

AC Duopave for Municipal- / Districtand partially for Regional Roads

AC Duopave

Combination layer - surface / base course

SMA

Aggregate fractions 11.2/16 mm 8/11.2 mm 5.6/8 mm 2/5.6 mm

AC Duopave

Sand 0.063/2 mm Filler ≤ 0.063 mm Bitumen VIATOP®

Seminar on Asphalt Pavements - Opatija 2019

Fibers designed by Nature

First Trial Section

Combination layer surface / base course (two in one)

AC Duopave 16

June 17th, 2008

District Road 3321 Rosenberg - Unterknausen

Fibers designed v Nature

First Trial Section

Seminar on Asphalt Pavements - Opatija 2019

Fibers designed by Nature

J. RETTENMAIER & SÖHNE

District Road – Höningen

Before maintenance

After maintenance

AC Duopave 16 Length 1,800 m

Seminar on Asphalt Pavements - Opatija 2019

Fibers designed by Nature

Publication

Special print of "asphalt" 3/2017

0102408 20207

1997

Asphalt construction with AC Duopave - an alternative

Economic efficiency in regional and communal road construction

Beglinnal and concentral roads form the majoring of the read network in Germany. Many of these roads are significantly damaged by front and water, especially to the long wrinte period. Anal mathematice carried soft is a barden on the Finances of Federal (takes, road districts and face) resemunities. One must thendber hold for solutions which are both includedly of a high goality and at the same time, none facecable is public badgets. An experi prove dealt with the topic of commission and communical rund construction in 2004.

Economic efficiency in regional and communal road construction

March 2017

✓ Paving in variable layer thickness possible

✓ High resistance to permanent deformation and wear

Improved road safety due to convincing skid resistance properties

✓ Easy to pave and to compact

Seminar on Asphalt Pavements - Opatija 2019

Fibers designed by Nature

\checkmark Perfect type of mixture for low traffic

regional and municipal roads

Seminar on Asphalt Pavements - Opatija 2019

Fibers designed by Nature

AC Duopave 16 (one layer – surface/base course) compared to conventional paving in two steps (two layers – surface + base course) is the more economic solution !

Seminar on Asphalt Pavements - Opatija 2019

1997 Julachen &

J. RETTENMAIER & SÖHNE

AC Duopave – Recommendations

J. RETTENMAIER & SÖHNE

AC Duopave – Recommendations

Recommendations for AC Duopave

C Duopave		AC Duopave 16	
Materials			
Aggregates (production size)			
Ratio crushed appregate surface		Count Count Count	
Resistance to crushing		SZ _{er} / LA _m	
Resistance to polishing		PSV(48)	
Minimum part of fine aggregates $0/2$ with $E_{\rm s}$ 3	15 56	50	
Composition of Asphalt Mixture			
Aggregate mixture			
Passing sieve 22.4 mm	To by weight	100	
Passing sieve 16 mm	% by weight	90 - 100	
Passing sieve 11.2 mm	% by weight	65 - 75	
Passing sieve 8 mm	% by weight	48 - 58	
Pausing sleve 5.6 mm.	% by weight	38-45	
Passing sieve 2 mm	% by weight	25-32	
Passing sieve 0.063 mm	% by weight	7-11	
Binder			
Binder, type and grade		50/70	
Minimum binder content	% by weight	8_52	
Stabilizing additive (cellulose fibers)	% by weight	≥02	
Asphalt Mixture			
Minimum void content Marshall-Specimen	Vol%	V_25	
Maximum void content Marsheli-Specimen	Vet-	V3.0	
Characteristics of Layer			
Paving thickness	cm	4.0 - 8.0	
Degree of compaction		98.0	
Void content	Vol%	5.0	
Gritting material		 – 2.0 kg /m¹ aggregates 2/5 mm (dedusted or lightly bitumenized) 	

Recommendations for AC Duopave

AC Duopave 16

Trial Section in Slovenia

J. RETTENMAIER & SÖHNE

Fibers designed by Nature

Specification and Trial Section in Hungary

MACT MAGYAR ÚT- ÉS VÁSÚTÜGYI TÁRSASÁG HUNGARIAN ROAD AND RAIL SOCIETY - UNGARISCHE GESELLSCHAFT FÜR STRASSEN- UND EISENRAHNWESEN

e-UT 05.02.21:2015 TERVEZÉSI ÚTMUTATÓ

SZÁMLAKÍSÉRŐ PÉLDÁNY

30

AC 16 alap-kopó típusjelű aszfaltkeverék kisforgalmú utak tartós aszfaltburkolatának építéséhez. Követelmények

Combined Wearing-Base Course Asphalt Mix AC 16 for Pavement Construction on Low-Volume Roads. Requirements

Trial Section in Budapest

"Combined Wearing-Base Course Asphalt

Mix AC 16 for Pavement Construction on

Low-Volume Roads. Requirements"

From 2013 in Poland

AC Duopave 16 = SMA 16 JENA (in Poland)

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

Fibers designed by Nature

Hvala lijepa!

VIATOP

Das Pellet.

Official Agent

office@interchem.at

frank.hauber@jrs.de

Seminar on Asphalt Pavements - Opatija 2019

J. RETTENMAIER & SÖHNE

R

